https://www.inaturalist.org/projects/groningen-vinkhuizen-eelderbaan/journal/44819-building-an-acoustic-recognition-database-tadarida-l-toolbox-animal-detection-on-acoustic-recordings-47
Studenten aan de UK Universiteit hebben Auto Rec hardware AudioMoth ontwikkeld (Open Acoustic Devices) een klein toestelletje dat flink aan populariteit aan het winnen is. https://www.openacousticdevices.info/audiomoth
Stewart Newson Norfolk Classifier in Belgium and UK.
STewart heeft voor de UK een classifier gebouwd om de UK soorten te determineren. Classifier UK uitbreiden met BENELUX soorten en classifier leert van zijn fouten. Tadarida is zeker niet slechter dan Kaleidoscoop als de opnamen maar goed zijn.
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.154/
https://www.youtube.com/watch?v=z5C3wLsyGdE&t=50m
https://photos.app.goo.gl/iCaBSZHkzw9cNW9K9
De derde lezing (vanaf 1.41.17uur) is wederom door Claire Hermans en geeft een preview op haar project: ‘Light on landscape’ waarbij ze vertelt over de werking van Microphone-arrays om vliegpaden van vleermuizen te reconstrueren.
https://photos.app.goo.gl/iCaBSZHkzw9cNW9K9
In Frankrijk is ook een Monitoring project gebaseerd op Tadarida en ze willen hun Franse herkennigns database ook niet ter beschikking stellen. https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13198
https://www.youtube.com/watch?v=z5C3wLsyGdE&t=52m
De tweede lezing (vanaf 52.18 min) is door Marc van der Sijpe en Claire Hermans : ‘Introductie in auto-recording en auto-identificatie en Explaination how works Tadarida and the BTO classifier of Tadarida’
Deze presentatie wordt in het Nederlands en Engels gegeven. Als eerste geeft Marc Van De Sijpe een introductie over auto- recording en auto-identificatie, waaronder Tadarida, een Open Sourceclassificatie in de programmeer- en statistiektaal R. Daarna neemt Claire ons in het Engels mee hoe Tadarida werkt, waarna ook de BTO classifier wordt gedemonstreerd
https://www.youtube.com/watch?v=z5C3wLsyGdE&t=101m Effect of light intensity on Habitat loss De derde lezing (vanaf 1.41.17uur) is wederom door Claire Hermans en geeft een preview op haar project: ‘Light on landscape’ waarbij ze vertelt over de werking van Microphone-arrays om vliegpaden van vleermuizen te reconstrueren.
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.154/
https://www.youtube.com/watch?v=z5C3wLsyGdE&t=47m (OpenSource Introduction)
Tadarida Open Software Toolbox
https://www.youtube.com/watch?v=z5C3wLsyGdE&t=59m (English)
DIY Zelfbouw Teensybat-VLEN Bat detector/recorder (Vleermuis) Open Source (45)
How to start a new BAT Classification database (Classifier) Together.
Are there people interessted in building a database.
Mark gave some identified recordings. With this TADARIDA L
https://www.youtube.com/watch?v=z5C3wLsyGdE&t=111m
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.154/
There is an R programm…Any user that subscribes can upload a ffile in a simple window to the Cloud in England and send back a .csv with the result. The volunteers in the UK throw away their recordins so now they are storing the uploading the files in the cloud. The identification will be stored in the UK Waarneming.nl. People can tell if the detection is wrong and the R programm can be adapted. Unknown if it will be Open Source if not Funding not Open Source. Free for volunteers
REQUIREMENTS:
Audio Bat Wav file with the namespecies and location of the bat in the file
NEM VT has recordings
Bestimmung von Fledermausrufaufnahmen und Kriterien für die Wertung von akustischen Artnachweisen - Teil 1
The original FFT is processed every 0.67msec. If you use a zoom factor of 4, you only take every fourth sample. Thus, it needs four times longer until you have acquired enough samples for the FFT, thus 2.67msec. Now, the trick is that you do not wait until you have all the samples collected, but you allow for „overlap“ in the samples and perform the FFT with the same rhythm of 0.67msec. [please note that this also takes four times the processing power compared to non-overlapping samples for the FFT and also takes more memory]
I have collected more information on the ZoomFFT in this Wiki:
https://github.com/df8oe/UHSDR/wiki/...ode-=-Zoom-FFT
I am not experienced in programming audio library blocks, but my gut feeling is, it could be easier to just use a queue object from the lib to get the samples and perform all the calculations in the main loop and not inside an audio lib object (because there are different sample rates involved). However, for people also interested in using the ZoomFFT, if you design a specific audio library object, you will get much more credit ;-).
Best wishes,
Frank DD4WH
https://www.bestellen.bayern.de/application/applstarter?APPL=eshop&DIR=eshop&ACTIONxSETVAL(artdtl.htm,APGxNODENR:34,AARTxNR:lfu_nat_00378,AARTxNODENR:357135,USERxBODYURL:artdtl.htm,KATALOG:StMUG,AKATxNAME:StMUG,ALLE:x)=X
BTW: this brandnew publication will rapidly become the professional standard for the identification of bat calls from spectrograms in Germany. Maybe it also helps others with ID of bats in Central Europe.
https://www.bestellen.bayern.de/application/eshop_app000007?SID=1399194937&ACTIONxSESSxSHOWPIC(BILDxKEY:'lfu_nat_00378',BILDxCLASS:'Artikel',BILDxTYPE:'PDF')
Bestimmung von Fledermausrufaufnahmen und Kriterien für die Wertung von akustischen Artnachweisen - Teil 1